State of California Department of Conservation

CGS » Regional Geologic Hazards and Mapping Program - PSHA » Ofr9608

California Geological Survey - Regional Geologic Mapping Program

California Department of Conservation Division of Mines and Geology Open-File Report 96-08

U.S. Department of the Interior U.S. Geological Survey Open-File Report 96-706

PROBABILISTIC SEISMIC HAZARD ASSESSMENT FOR THE STATE OF CALIFORNIA

Mark D. Petersen, William A. Bryant, Chris H. Cramer, Tianqing Cao, and Michael Reichle California Department of Conservation, Division of Mines and Geology

Arthur D. Frankel
U.S. Geological Survey, Denver, Colorado

James J. Lienkaemper, Patricia A. McCrory, and David P. Schwartz U.S. Geological Survey, Menlo Park, California

1996

CALIFORNIA DEPARTMENT OF CONSERVATION DIVISION OF MINES AND GEOLOGY 801 K Street, MA 12-31 Sacramento, California 95814

in cooperation with

U.S. DEPARTMENT OF THE INTERIOR: U.S. GEOLOGICAL SURVEY Denver Federal Center P.O. Box 25286 Denver, Colorado 80225

> U.S. GEOLOGICAL SURVEY 345 Middlefield Road, MS 977 Menlo Park, California 94025

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Copies of this report also are available for purchase from the Public Information Offices of the Division of Mines and Geology. Ask for DMG Open-File Report 96-08 (price: \$35.00, prepaid, including tax, shipping, and handling; price subject to change).

California Geological Survey's Public Information Offices:

Southern California Regional Office 107 South Broadway, Rm. 1065 Los Angeles, CA 90012-4402 Phone: (213) 620-3560 Publications and Information Office 801 K Street, MS 14-33 Sacramento, CA 95814-3532 Phone: (916) 445-5716 Bay Area Regional Office Earth Science Information Center / Map Sales Building 3, Room 3-121 345 Middlefield Road, MS 520 Menio Park, CA 94025 Phone: (650) 688-6327

Table of Contents

Introduction
Seismicity in California
Faults in California
Methodology
Earthquake Sources
Magnitude-frequency Distributions

State of California Department of Conservation

CGS ** Regional Geologic Hazards and Mapping Program ** PSHA ** Ofr9608

a faults

CALIFORNIA DEPARTMENT OF CONSERVATION DIVISION OF MINES AND GEOLOGY OPEN-FILE REPORT 96-08

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 96-706

APPENDIX A

CALIFORNIA FAULT PARAMETERS

FAULT NAME AND GEOMETRY (ss) strike slip, (r) reverse, (n) normal (rl) rt. lateral, (il) left lateral, (o) oblique			SLIP RATE (mm/yr)		RANK (1)	Mmax (2)	CHAR. RATE (events/yr)	R.I. (3)	Down dip Width (km) (4)		ruptop (5)					Endpt N	Endpt S	COMMENTS
SAN ANDREAS FAULT ZONE																		
San Andreas - Coachella (rl-ss)	95	10	25.00	5.00	Р	7.1	0.0000	n/a	12	2	0	12	180	90	o	- 116.48; 33.92	115.71; 33.35	Slip rate based on Sieh and Williams (1990); Sieh (1986); Keller et al. (1982); Bronkowski (1981). Model assumes slip only in S. San Andreas events.
San Andreas - San Bernardino (rl-ss)	107	11	24.00	6.00	М	7.3	0.00231	433	18	2	0	18	180	90	0	- 117.53; 34.31		Slip rate reported by Weldon and Sieh (1985).
San Andreas (southern) (rl-ss)	203	20	24.00	6.00	Р	7.4	0.00454	220	12	2	0	12	180	90	0	- 117.53; 34.31	- 115.71; 33.35	Rupture of San Bernardino and Coachella segments. Slip rate based on Coachella segment.
San Andreas - Mojave (ri-ss)	99	10	30.00	7.00	Р	7.1	0.00182	550	12	2	0	12	180	90	0	- 118,50; 34.70	- 117.53; 34.31	Slip rate based on Sieh (1984), Salyards et al. (1992), and WGCEP (1995).
San Andreas - Carrizo (ri-ss)	145	15	34.00	3.00	w	7.2	0.00000	n/a	12	2	0	12	180	90	0	- 119.86; 35.31		Slip rate based on Sleh and Jahns (1984). Model assumes slip only in 1857-type events.
San Andreas - Cholame (rl-ss)	62	6	34.00	5.00	Р	6.9	0.00229	437	12	2	0	12	180	90	0	- 120.29; 35.75	119.86; 35.31	Slip rate based on analogy with Carrizo segment.
San Andreas Parkfield Segment (ri-ss)	37	4	34.00	5.00	Р	6.7	0.04060	25	12	2	0	12	180	90	0	120.56; 36.00	120.29; 35.75	Slip rate reported by WGCEP (1995).
San Andreas (1857 rupture) (rl-ss)	345	35	34.00	5.00	w	7.8	0.00485	206	12	2	0	12	180	90	0	120.56; 36.00	117.53; 34.31	Rupture of Parkfield, Cholame, Carrizo, and Mojave segments. Max. magnitude based on 1857 event (Ellsworth, 1990). Slip rate based on Carrizo segment.
San Andreas (creeping segment) (rl-ss)	125	13	34.00	5.00	Р	*	0.00000	n/a	12	2	0	12	180	90	0	121.51; 36.82	120,56; 36.00	Background seismicity.
San Andreas (Pajaro)	22	2	14.00	3.00	Р	6.8	0.00000	n/a	18	2	0	18	180	90	0	- 121.69;	121.51;	Pajaro segment assumed to rupture only in 1906-type

Laguna Salada (ri-ss)	67	7	3.50	1.50	м	7.0	0.00297	336	15	2	0	15	180	90	О	- 115.88; 32.73	- 115.40; 32.29	Slip rate reported by Mueller and Rockwell (1995).
Elsinore- Coyote Mountain (ri-ss)	38	4	4.00	2.00	м	6.8	0.00160	625	15	2	a	15	180	90	0	116.36; 32.97	-	Slip rate and fault length reported by WGCEP (1995).
Elsinore- Julian (rl-ss)	75	8	5.00	2.00	Р	7.1	0.00294	340	15	2	0	15	180	90	0	- 117.01; 33.38	- 116.36; 32.97	Slip rate and fault length reported by WGCEP (1995).
Elsinore- Temecula (rf-ss)	42	4	5.00	2.00	М	6.8	0.00417	240	15	2	0	15	180	90	o	117.35; 33.64		Slip rate and fault length reported by WGCEP (1995).
Elsinore-Glen lvy (rl-ss)	38	4	5.00	2.00	М	6.8	0.00294	340	15	2	0	15	180	90	0	- 117.64; 33.85		Reported slip rates vary from 3.0-7.2 (Millman and Rockwell, 1986)
Whittier (rl-ss)	37	4	2.50	1.00	М	6.8	0.00156	641	15	2	0	15	180	90	0	- 118.02; 33.97	- 117.64; 33.85	Slip rate based on Rockwell et al. (1990); Gath et al. (1992) description of offset drainage.
HAYWARD - RODGERS CRK FAULT ZONE																		
Hayward (total length) (rl-ss)	86	9	9.00	1.00	M-W	7.1	0.00600	167	12	2	0	12	180	90	0	- 122.41; 38.05	121.81; 37.45	Well constrained slip rate for southern segment reported by Lienkaemper, et al. (1995) and Lienkaemper and Borchardt (1996). Recurrence (167 yrs) and slip per event (1.5 m) are based on WGCEP (1990). Model weighted 50%.
Hayward (south) (rl-ss)	43	4	9.00	1.00	w	6.9	0.00600	167	12	2	0	12	180	90	0	121.13; 37.73	121.81; 37.45	Well constrained slip rate reported by Lienkaemper, et al. (1995) and Lienkaemper and Borchardt (1996). Recurrence (167 yrs) and slip per event (1.5 m) are based on WBCEP (1990). The southern segment can be projected to Calaveras fault along prominent zone of seismicity. Net slip rate of 9mm/yr can be resolved into 3mm/yr vertical and 7.6mm/yr vertic
Hayward (north) (ri-ss)	43	4	9.00	1.00	М	6.9	0.00600	167	12	2	0	12	180	90	О	- 122.41; 38.05	122.13;	Well constrained slip rate for southern segment reported in Lienkaemper, et al. (1995) and Lienkaemper and Borchardt (1996). Recurrence (167 yrs) and slip per event (1.5 m) are based on WGCEP (1990). Model weighted 50%.
Rodgers Creek (ri-ss)	63	6	9.00	2.00	М	7.0	0.00450	222	10	2	o	10	180	90	0	122.77; 38.54	38.09	Slip rate is composite of slip rate reported by Schwartz, et al. (1992) and slip rate from Hayward fault (Lienkaemper and Borchardt, 1996). Recurrence (222yrs) and slip per event (2.0 m) are based on WGCEP (1990).